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Introduction

Let z = (z1,%2,73): M — R3 be a connected, oriented immersed minimal
surface in R®. The Gauss map G of M is classically defined to be the map
which maps each point p of M to the unit normal vector G(p) € 82 of M
at p. For the sake of convenience, we mean in this paper by the Gauss map
of M the map g: M — C := CU {0} (= P!(C)) which is the conjugate of
the composition of G and the stereographic projection from $2 onto C. By
associating a holomorphic local coordinate z = u + /—1v with each positive
isothermal coordinate system (u,v), M is considered as a Riemann surface
with a conformal metric ds?. By the assumption of minimality of M, g is a
meromorphic function on M.

In 1961, R. Osserman showed that if M is nonflat and complete, then the
Gauss map g: M — C cannot omit a set of positive logarithmic capacity
[10]. Afterwards, F. Xavier proved that the Gauss map of such a surface
can omit at most six points [14]. Recently, the author has shown that the
number of exceptional values of the Gauss map of such a surface is at most
four [8]. Here, the number four is best-possible. Indeed, there are many kinds
of complete minimal surfaces in R® whose Gauss maps omit four points ([10]
and [12]). The author also obtained some estimate of the Gaussian curvature
of a noncomplete minimal surface in R3 whose Gauss map omits five distinct
points [8].

The purpose of this paper is to give some improvements of the above-
mentioned results. We shall introduce some new types of modified defects
for a nonconstant meromorphic function on an open Riemann surface and
give modified defect relations for the Gauss map of a minimal surface in R3
which have analogy to the defect relation given by R. Nevanlinna in his value
distribution theory.
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1. Statement of the main results

We first give the definitions of modified defects. Let M be an open Riemann
surface and f a nonconstant holomorphic map of M into P!(C). We represent
f as f=(fo: f1) with holomorphic functions fo, fi on M without common
zero, which ‘we call a reduced representation of f on M in the following.
Set ||fIl = (Ifol? + |f1]?)}/? and, for each & = (a° : a') € P!(C) with
|a®|? + |a!|? = 1, define the function F, := a! fo —a°f;.

Definition 1.1. We define the S-defect of o for f by

6}9(a) :=1—inf{n > 0; n satisfies condition (*)s}.
Here, condition (x)s means that there exists a [—00,00)-valued continuous
subharmonic function u (£ —o0) on M satisfying the following conditions:

(D1) e < ||£1|7,

(D2) for each ¢ € f~1(a) there exists the limit

imé(u(z) —log |z —¢|) € [~00,00),

where z is a holomorphic local coordinate around ¢.

Remark. .In the previous pa.peljs (6] and [7], we call the S-defect of & the
nonintegrated defect of a.

Definition 1.2. We next define the H-defect of & for f by

6;{(a) :=1—inf{n > 0; n satisfies condition (*)g}.
Here, condition (*)y means that there exists a [—oo, 00)-valued continuous
function w on M which is harmonic on M\f~*(a) and satisfies conditions
(D1) and (D2).
Definition 1.3. = We define also the O-defect of o for f by
61»0(a) = 1—inf{1/m; F, has no zero of order less than m}.

Obviously, if n satisfies condition (*)&, then it satisfies condition (*)g.
Moreover, if F, has no zero of order less than m, then n := 1/m satisfies
condition () g. Indeed, the function u = nlog [Fy| is harmonic on M\ f~ 1(a)
and sa.tlsﬁes condltlons (D1) and (D2). From these facts, we see

(1.4) O<6f(a)<6f()<6f(a)<1

These modified defects have the followmg properties similar to those of the
classical Nevanlinna defect. :

Proposition 1.5. (i) If there exists a bounded holomorphic function g
on M such that g=1(0) = f~1(a), then 6f/(a) = 67 () = 1. :

(ii) If Fy has no zero of order less than m, then .

5}9(a) > 6f(a) > 6?(a) >1—-1/m.

In particular, if f~1(a) = O, then 6})(a) =1.
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Proof. Assertion (ii) is obvious from Definition 1.3. To see (i), we consider
the function u = log(|g|/K), where K := sup{|g(z)|; 2 € M}. Then u satisfies
conditions (D1) and (D2) for n = 0. Thus, = 0 satisfies condition (*)g and
50 6 Jff () =1.

We now consider the case where M = C. Without loss of generality, we
may assume f(0) # a. We define the order function of f by

T/ (1) o= = 27r1 )1 dg ~1 0
)= 5= [ togllf(re)l| s ~1og 7O}
and the counting function for o by
Nl = [ #UT@n G s T
0

where #A denotes the number of elements of a set A. Then the classical
Nevanlinna defect without counted multiplicities is defined by

: Ni(r)

bs(a) :== 1~ limsup =%+

By the help of Jensen’s formula, we can show easily
(1.6) 0 < 67 (a) < 65(0),

[6, Proposition 4.7].

Now, we state our main results. First, we give

Theorem 1. Let z: M — R3 be a nonflat complete minimal surface and
g: M — PY(C) the Gauss map. Then, for arbitrarily given distinct points

a1, 0 € PY(C),
q

Z 6;1(01) < 4.
j=1

Since we have 65 (o) = 1 for every oy ¢ g(M) by Proposition 1.5, Theorem
I yields the following result which was given in [8].

Corollary 1.7. The Gauss map of a nonflat complete minimal surface
in R3 can omit at most four points.

We next consider a noncomplete minimal surface z: M — R3. We denote
by d(p) the distance from a point p € M to the boundary of M, namely, the
largest lower bound of the lengths of all piecewise smooth curves going from
p to the boundary of M, and by K(p) the Gaussian curvature of M at p.

Theorem II. Letz: M — R2 be a nonflat noncomplete minimal surface
and g the Gauss map. If there exist distinct points oy, -+ ,a, € P(C) such
that 327_, 65 (a;) > 4, then

|K (p)| < C/d(p)?
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for all p € M, where C is a positive constant depending only on aq, - , ¢y
and 65?((11)1 T 6go(aq)

This is an improvement of [8, Theorem IJ.

Let z: M — R* be a minimal surface in R*. As is well known, the set of
all oriented 2-planes in R* is canonically identified with the quadric

Q2(C)={(w1:--:wq) € P3(C); wi + w2 + w3 + w} = 0}

in P3(C). The Gauss map of M is defined by the map G: M — Q4(C) which
maps each point p € M to the point G(p) € Q2(C) corresponding to the
oriented tangent plane of M at p. Since Q2(C) is canonically biholomorphic
with P1(C)x P1(C), G may be identified with a pair of meromorphic functions
g =(91,92): M — P(C) x P}(C). We can prove the following.

Theorem III. Let x: M — R* be a complete minimal surface and g =
(g1,92): M — PY(C) x P1(C) the Gauss map of M.

(i) Assume that g1 % const. and go Z const. Then, for arbitrary distinct
o1, ,Q1q, € PYC) and distinct ag1,- -+ , 029, € P(C), at least one of
the following conclusions is valid:

(a) Zéjf(au) <2,

q2
Jj=1
1 1
(¢) + > 1.
3_1_1 1 (alz) 2 32 1 g2(a2]) 2

(ii) Assume that g # const. and gy = const. Then, for arbitrary distinct
points o, -+ ,0q € P1{C), we have

ZéH(aJ

This is an improvement of Theorem II of [8].
After giving the Main Lemma in the next section, we shall prove Theorems
I, IT and III in §§3, 4 and 5 respectively.

2. Main Lemma

Let f be a nonconstant holomorphic map of adisc Ag := {z € C; |z| < R}
into P1(C), where 0 < R < co. Take a reduced representation f = (fo : fi)
on Ag and define

WAL= (ol +1AIDYE,  W(fo, f1) = fofi ~ f1f5
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For arbitrarily given ¢ distinct points a; = (a? : ajl-) (1<5<yq),set
Fi=ajfo—alfi (1<5<yq),
where [a9[% + [a} > = 1.

Proposition 2.1. For each € > 0 there exist positive constants C and u
depending only on a1, -- , 0y and on € respectively such that

11 L1294 (fo, £
Am(?ﬂmwmwmm)ZO;JEWMMMWWM'

This is a restatement of a special case of [4, §6, Proposition] (cf. [13, §6]).
For the sake of completeness of self-containedness, we give here a direct proof.

We show first
Lemma 2.2. For each € > 0 there exists a constant ug(g) > 1 such that,
for every u > po(e),

AW FOP
A1 IR 2 PR Fiog PR =1

Proof. Set @; := |Fj|2/||f]]?. We have

a .
gg ”ﬂPWTHm2|FHhh+AhH
={ﬁkwummm¢ﬁ+@ﬁﬁ
=B oy £ (a2 + 2P (fol? + 112]?) - a2 fo — O [2)

RHE
W (e )P
- (<10_7 <P_7) Hf”4 *

On the other hand, it holds that

9%log || f|I? _ (582 + A1) Ufol® + 1112 = Lfofg + f1f1I?
320% s
_ W (fo, f1)]?
(P2
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Therefore,

Alog 1 - 4 d%log ey 4
log(u/p;) ~ logu/w;) 0202  p2log®(u/p;)
4 2loglifI?
log(u/pj) 020z
4(0; — ¢3) 9%log|IfI?
©?log?(u/p;) 020%
4 W (fo, f1)I?
pilog?(u/e;) 1A

2
dp;

Y N S § 2113
log?(u/p;)  log(u/e;)) 020z
If we choose a positive constant ug(g) with
1 1
log® pole) * 1o hole)
we have the desired inequality because |p,| < 1.

Proof of Proposition 2.1. For a given € > 0 we take a constant y with
@ > po(e/q). By Lemma 2.2, we obtain

171l
Ao T e W TR )

2 AW (fo, f1)I? € 9
2 ¢ Alogllf] +Z( TR ”)

_ AW (fo, f1)I Z 1117
1113 |F5 |2 log® (ul| £112/\F512)

On the other hand, for each (7,5) with 1 < 7 < j < g, there exists a
constant C;; depending only on o; and «; such that

IF1l < Ciy max(|Fsl, | Fyl),

because fo and f; can be represented as a linear combination of F; and Fj.
Set Cq := max<i<j<q Cij and

M := max{z/log? uz; 1 < z < C3}.

For an arbitrarily fixed z € Ag we determine indices 7, --,J, with
{71, 1 Jq} ={1,2,--- ,q} so that

|5 (2)] < |Fj (2)] < - - < U5, (2)]-
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Then, for | = 2,3, -, g, we have || f(2)|| £ Co|F},(2)| and so

52 |
|Fji (2)]2 log® (ul|f (2)I[2/| F5[2) ~
Therefore, at the point 2z, we obtain

) ik

& T e AT
[Fili

= [Fn P 1og” (ull 1P/, )

o1 (fl il ) I£12
T MO\ (F 2 1og® (ulIf112/1F5 1) ) |F, 12 log® (ullF112/ 1 F5, 12)
_ 171122
M= TTE, |F512 log? (ul £112/1F512)
Since the last term does not depend on choices of indices ji, - - - , Jq, this holds
on the totality of Ag. Combining this with the inequality obtained above, we
conclude Proposition 2.1.

Now, we consider [—o0,00)-valued continuous subharmonic functions u;
(£ —o0) on Ap and nonnegative numbers 7; (1 < j < q) satisfying the
conditions:

(CYy:=g—2—(m+--+ny) >0,

(C2) % < |IfIm for j=1,2,-- ,q,

(C3) for each ¢ € f~(a;) (1 < j < q) there exists the limit

lim () ~ log |z = <)) € [c0,o).

Lemma 2.3. For positive constants C and y (> 1), set

Lf|[ret e W ( fo, o)
3=1 [F5|log(ullf11?/1F51?)

on Ag\{F1...Fg =0} and v := 0 on Ag N{Fy...F, = 0}. Then v is
continuous on Agp and satisfies the condition Alogv > v? in the distribution
sense for suitably chosen C, u depending only on o and n; (1< 5 <gq).

Proof. Obviously, v is continuous on {F; ... F, # 0}. Take a point ¢ with
F;(¢) = 0 for some i. Then Fj;(¢) # 0 for all j # ¢. Changing indices if
necessary, we may assume that fo(¢) # 0. Set xi := W{(fo, f1)/F:. It has a
pole of order one at ¢ because we can write x; = —(fo/a?){(¢'/(g — as)) for
g := fi/fo. Therefore, the function

v:=C

eui[W(an fl)l — (lz_ S,' IX_Deu;—logp—gl
IF| ’
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is bounded in a neighborhood of ¢. This implies that lim,_,; v(2) = 0. Even-
tually, v is continuous on Ag.

Now, we choose constants C and p such that C? and pu satisfy the inequality
in Proposition 2.1 for the case ¢ = 4. We then have

[Fal
71 log(ull FIP/1F57)
or_ P (fo, )2
T I B leg? (ullA12/1F5?)
Cznfn"’*e?w W (fo, 1)
[T3= 5512 log™ (Iull £112/1F512)

=’U2.

Alogv > Alog

Lemma 2.4. For the above u;, n; and vy, we can choose positive constants
C* and u such that
Hf”'ye’u1+~“+’uqlW(f0’ f1)| < C* 2R
i=1 [Fjllog(ul|fI2/|F5?) = = R? —[z|?
This is an immediate consequence of Lemma 2.3 and the following gener-
alized Schwarz’ Lemma.

Lemma 2.5 (cf. {1]). Let v be a nonnegative real-valued continuous sub-
harmonic function on Agp. If v satisfies the inequality Alogv > v% in the
distribution sense, then

2R

o(2) S An(e) =

Proof. Since Ar(2) is continuous in 7, we have only to show that

n-(2) == v(2)/A(2) <

on A, for every »r < R. Since lim, .94, 7-(2) = 0, there exists a point
29 € A, such that n,(20) = max{n,(2); z € A,}. Suppose that n,(z) > 1.
Then #,(2) > 1 and so v(2) > A.(z) on an open neighborhood U of z5. By
the assumption,

| (2.6) Alogn, = Alogv — Alog ), > v2 =22 >0

in the distribution sense on U. Therefore log 7, is subharmonic and necessarily
a constant on U by the maximum principle. This contradicts (2.6). Thus
7-(20) <1 and so 7,(2) <1 on A,.
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We now give the
Main Lemma. Let ui,---,uq be continuous subharmonic functions on
M, and n1,-- ,nq nonnegative constants which satisfy the conditions {C1)-

(C3). Then, for every § with 0 < g6 < -y, there exists a constant Cy such
that

A9 et +uaW (o, f1)] o 2R
[FiFy. .. Fy|i—s = VORI Y

2.7)

Proof. For a given 6 we set

C:= sup z°log(u/z?)(< +00).
0<z<1

Then we have
A9 eurt e\ W( fo, f1)

|F1Fy ... Fo|t—8
”f”’leuﬁ- +uq|W fO,fl q (_E_)
|F1Fs .. H LAl

Lires +""(W(fo,f1)l
j=1 | Fillog(ullfII2/1F5]%)
. 2R
<00 (7).
where C* and u are the constants given in Lemma 2.4. This gives the Main
Lemma.

We later need the following modified defect relation which is a direct result
of the classical Nevanlinna defect relation and (1.6). We give here a direct
proof of this by the use of the Main Lemma.

Theorem 2.8. Let f: C — P(C) be a nonconstant holomorphic map.
For arbitrary distinct points ay,- - , 0, € P1(C)

< (1

q

Y 67 (ey) <2,
i=1

Proof. Without loss of generality, we may assume u;(0) # —oo, f(0) # a;
(1 <7 € q) and W(fo, f1)(0) # 0, where fo, f1 are holomorphic functions
on C such that f = (fo : f1) is a reduced representation. Suppose that

;1:1 6? (a;) > 2. Then there exist positive constants 71, -+, 7, satisfying
condition (C1) and continuous subharmonic functions uj, - ,ugy on M satis-
fying conditions (C2) and (C3). For every R > 0 and § with v > ¢6 > 0 we
apply the Main Lemma to the map f|Agr: Ag — P(C). Substitute z =0
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into inequality (2.7). We can conclude that R is bounded by a constant de-
pending only on a;, n; and the values of f, u;, F;, W(fo, f1) at the origin.
This is a contradiction. Thus, we have Theorem 2.8.

3. Proof of Theorem I

Let z = (z1,73,73): M — R3 be a nonflat minimal surface and g: M —
PY(C) the Gauss map. The argument in this section is also used for the
proof of Theorems II and III. We do not assume completeness of M for the
present. For our purpose, we may assume that M is simply connected. In
fact, for the universal covering surface «: M—-MZ=zmM-R%is
also a nonflat minimal surface, and complete if M is complete. Moreover, the
Gauss map of M is given by § := g- x, and the modified defects for g are not
larger than those for §. Since there is no compact minimal surface in R%, M
is biholomorphic with C or the unit disc in C. For the case M = C, Theorem
I is true by virtue of Theorem 2.8. In the following, we assume that M is
biholomorphic with the unit disc in C.

Set ¢; = z;/8z (i = 1,2,3) and f := ¢; —/—1¢3. Then, the Gauss map
g: M — PY(C) is given by

g=¢3/($1 — V—~162),
and the metric on M induced from R3 is given by
(3.1) ds® = | fI*(1+1g*)? |d=?,

[12]. Take a reduced representation ¢ = (go : ¢1) on M and set |[g]] =
(1g0|2 + |g1|*)'/. Then we can rewrite

ds? = |h|?||g)}* |d=|?,
where h := f/g2.

Now, for given g distinet points ay, - ,aq € P!(C) we assume that
q
(3.2) > 68 (a;) > 4.
7=1

By Definition 1.2, there exist constants n; > 0 (1 < 5 < g) such that v :=
g—2—(m+---+mng) > 2 and continuous functions u; (1 < 5 < ¢q) on M
such that each u; is harmonic on M\ f~!(a;) and satisfies conditions (C2)
and (C3). Take & with

(3.3) (v=2)/a>6>(v-2)/(g+2),
and set p = 2/(v — ¢6). Then
(3.4) 0<p<l, é6p/(1-p) > L
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Set M’ := M\{F\F,... F,W(go,91) = 0} and define the function

- p/(1-p)
(3:5) v i= (B[0P ( |F1Fy ... Fpt—t )
eu1+-.4+quW(go’gl)l
on M’, where Fj := ajgo — alg; for representations a; = (a : aj) with

(92 + |aj* =1 (1 < 5 < q). Let 7: M’ — M’ be the universal covering
surface of M’. By the assumption, logv - 7 is harmonic on M’. Take a
conjugate harmonic function v* of logv -7 on M’ and define the holomorphic
function ¥ := €8 ™T¥" which satisfies the identity |¢)| = v - 7. Choose a
point 0 € M’. We may regard o as the origin in C. Each % of M’ corresponds
bijectively to the homotopy class of a continuous curve ~;: [0,1] — M’ and
~3(0) = 0 and ~z(1) = 7(%). We denote by & the point corresponding to the
constant curve o. Set

w=F(2) = / ¥(z)dz.

Then, F is a single-valued holomorphic function on M’ and satisfies the con-
ditions F(6) = 0 and dF (%) # 0 for every Z € M’. Therefore, F maps an open
neighborhood U of 6 biholomorphically onto an open disc Ag := {w: |w| < R}
in C, where 0 < R < 400. Choose the largest R with this property and define
® ;= . (F|U)"!. Then R < 400 because of Liouville’s theorem.

We now consider the line segment

L,: w=ta, 0<t<1,
in Ar and the image
To: 2= ®(ta), 0<t<1,
of L, by ® for each point a € dAgr. We claim that there exists a point
ag € AR such that Ty, tends to the boundary of M. Assume the contrary.
Then, for each a € AR there is a sequence {t,; ¥ = 1,2,...} such that
lim, 00 t, = 1 and 2g := lim, 00 P(t,a) exists in M. Suppose that zo ¢ M'.

Then 2o is a zero of one of the holomorphic functions F, - - - , Fy and W(go, 91).
By the same argument as in the proof of Lemma 2.3, it can be shown that

lim iof [(FyF, ... F)(2)|%7/C02)y(2) > 0
in the case F;(z) = 0 for some ¢, and
lim inf | (g0, 91) (2)[ " v(2) > 0
in the case W(go, g1){20) = 0. In any case, we can find a positive constant C

such that v > C/|z — 20|%?/(*~P) in a neighborhood of z. By virtue of (3.4),
we get
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o - 2

Zcﬁanz—so—wm'd”:m

This is a contradiction. Therefore, zg € M".

Take a simply connected neighborhood V' of 2y, which is relatively compact
in M’. Since v is positive continuous, we have C’ := min_y v(z) > 0. If there
exists a sequence {t,;v = 1,2,...} such that lim, o t, = 1 and ®(t,a) ¢
V', then I', goes and returns infinitely often from 0V to a sufficiently small
neighborhood of 23, and so we have an absurd conclusion

ldz] = | o(z)|dz]
1

R= ldw]ZC'f \dz] =
L, Ts

Therefore, ®(ta) € V (¢y < ¢t < 1) for some ty. Moreover, since V' can be
replaced by an arbitrarily small neighborhood of zp in the above argument,
we can conclude that lim;_,; ®(ta) = zo. Let V be a connected component of

~1(V'), which includes {(F|U)~(ta); to < t < 1}. Since x[V:V — V isa
homeomorphism, there exists the limit

% = lim (F|U) ™ (ta) € M.

Then F maps an open neighborhood of Zy biholomorphically onto a neighbor-
hood of a. Eventually, (F|U)~! has a holomorphic extension to a neighbor-
hood of each a € A as a map into M’. Since A is compact, we can easily
find a constant R’ with R < R’ such that F maps an open neighborhood of U
biholomorphically onto Agr. This contradicts the property of R. Therefore,
there exists a point a9 € Ag such that I'y, tends to the boundary of M.

The map z = ®(w) is locally biholomorphic, and the metric on M’ induced
from ds? through @ is given by

®* ds? = |ho ®|? ||go<I>||4 |d 2.

On the other hand, by the definition of w = F (z) we have, because of (3.1),

dw|'™? W [FiFp .. Fy1m0P
dz (g1 F4a W (go, g1))P

Set f:=go®, fo=goo®, fi =g1 0P and abbreviate u; 0 ® and F; 0o ® by
u; and Fy respectively. Since

W(for /1) = (W (90,01) 0 @) o2
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we obtéin
dz| _ (et W (fo, f1)])P
dw|  |h||FiFy... F,|1-8p ~
Therefore,
2
v a2 _ (ISP (e e W (fo, f1)])P 2
(3.6) &* ds* = ( FiFs . B[00 |dw|*.

We apply here the Main Lemma to the map f: Agp — P!(C) to see

. 2R \*
0] d82 S Cgp (m) |d’IU|2

It then follows that

(3.7) d(0) S/I‘u ds=/Lu ®* ds

R 2R P
< CP _ = 1-p
<c /0 <R2 2 |w|2) \dw| = C1 R,

where Cp and C are positive constants depending only on oy and 6§ (a;)
(< 6 (ey)).
Now, as in Theorem I, suppose that M is complete. Then d(0) = oo. This

contradicts the fact R < oo. For a nonflat complete minimal surface in R3,
(3.2) is not true. This completes the proof of Theorem I.

4. Proof of Theorem II

As in Theorem II, let z: M — R? be a nonflat minimal surface, and
g: M — P!(C) be the Gauss map, and assume that

q
(4.1) > 69(ey) > 4,
j=1
for ¢ distinct points ay, -,y € P1(C). For our purpose, we may assume

that M is biholomorphic with the unit disc in C. We use the same notation
as in the previous section. By Definition 1.3, there exist positive integers
my,--- , Mg such that

gi= (1——1—>+"'+(1—L>—2>2,
mi my

and each F; (1 < 5 < g¢) has no zero of order less than m;. Set n; := 1/m;
and u; := n,log|F;|. Thus, u; are harmonic on M\f~'(¢;) and satisfy
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conditions (C2) and (C3) in §2 for the map g: M — P!(C). All arguments in
the previous section work for the constants #; and functions u; (1 < j < g).
By the same method as in the previous section, we can define a holomorphic
map :

P AR - M = M\{F1F2 .. .FqW(go,gl) = O},
such that the induced metric on Ag is given by (3.6) and satisfies condition

(3.7), where f = (fo: f1) =go ®.
Now, apply the Main Lemma to the map f to show that

WA~ CW (fo, f)] (ISP Pemt e W (fo, f1)]
|[Fi[i=m=6  |Fp|i=-ma—0 |F1Fp... Fy|1=?

2R
<00 (mep):

where 0 < g6 < v, and Cp is a constant depending only on o; and n;. Set
p =2/(y — ¢6) and substitute w = 0 into this inequality. We can conclude

[Fy(0)| 1m0 |Fy(0)|t~ma—0)1-P
W (fo, f1)(0)[1=|| £(0)|[2(1~2)/7

On the other hand, by substituting e%/ = |F;|? into the identity (3.6), we
obtain

(4.2) RI7P < (200)1—1’(

WA oo 2P o

* 2 _ 12 2 _
¢ ds -——/\ |du)| = (IFlll_nl_é~"|Fqll—nq_6)2p

Therefore, the Gaussian curvature of M at the origin is given by

Alog
)2
4|W(f0,fl)(0)|2(1—p)(|F1( Jr-m=s |Fq(0)|1——ﬂq—§)2p
1FO)TE

Comparing this with the right-hand side of (4.2), we have

K(0) = -

1-n1— 5 F (0),1—174—5
1-p < gl- » [F1(0)] - Fy
SR O HOESRE

Since |F;|/||f]| < 1for j =1,2,---,g and

2(1+p)=2(~/ g6 ) zj:l_n]_é

p
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we can conclude that
RP <Gy PIK(O) V2

Combining this with (3.7), we complete the proof of Theorem II.

5. Proof of Theorem III

As in Theorem III, let = = (z;,%2,%3,24): M — R* be a nonflat com-
plete minimal surface in R*, and g = (g1,92): M — P(C) x P1(C) be the
Gauss map. For the proof of Theorem III, we may assume that M is biholo-
morphic with the unit disc in C as in the previous sections. Take a reduced
representation gr = (gko : gr1), and set ||gk|| = (lgrol* + |gk1|?)*/? for each
gk: M — P1(C) (k = 1,2). Then the induced metric on M is given by

4 1 om 2
ds2=2(2 i

— 0z

) |dz? = h[*]lg1 112 lg2l|? |dz]?,

where h = (9z1/82 — V=1022/02)/(g10921)-
Consider first the case where g; # const. and g2 # const. Suppose that

q2
Z(S (015) > 2, Z(S;g(agj) > 2
S

1 n 1 <1,
i= 165{(0‘11)_2 ] =1 92(012])_2
for distinct points @11, - - , @14, € P1(C) and distinct points gy, -+, 0rgq, €
P1(C). By Definition 1.2, there exist nonnegative constants 91, - - - , kg, and
continuous functions uki,- -+ ,uge, on M for each k = 1,2 such that each uy;
is harmonic on M\ f~* () and satisfies the conditions
(51) Ve = qk_2_(nk1+"'+nqu)~>0 (k=la2),
1 1
(6.2) . —+ =<1,
M2
(53) euks < ”gkllnki (1 < 1 < qk, k= 1’2)7
(5.4) for every ¢ € g,:l(aki) there exists the limit

lim (us(2) —log |2 — ¢]) € [~00, 00).

Take a constant 8y such that 0 < gxdp < ¢ and
1 1

+ =1
Y1 —q16o  v2 —q260
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If we choose a positive constant § (< &) sufficiently near to 6o and set
o= (k=12),
Ve — qkd
we have
Pk

1-p1—p2
Represent each ay; as ay; = (ad; : a};) and define holomorphic functions
Fri := a},gko — ag;gk1, where [a2;|2 + |a},|? = 1. Set

(5.5) 0<p+pe <1, >1 (k=1,2).

Uk = Uk + - + Ukgy»
Fk = Flekg...quk,

for each k = 1,2 and define

( || |[F|A—0)1 || (1 -0)pa ) 1/(1-p1-p2)
vi=

(e"1]W (g10, g11)])P* (€V2|W (g20, g21)))P2
The function log v is harmonic on the set
M' = M\{W (g10,911)W (g20, g21) F1 Fs = 0}.

Let 7: M’ — M’ be the universal covering surface of M'. In the same manner
as in §3, we can find a holomorphic function ¢ on M’ such that || = v - 7.
Define
w=F@) = [ ¢(z)dz (pe M),
Y5

as before. Then F maps an open neighborhood U of a point 6 biholomorphi-
cally onto a disc Ag in C, where we choose the largest R with this property.
Set @ := w-(F|U)~!. Then, we have R < 0o and there exists a point ap € dAg
such that the image

Fap: 2 = ®(tag), 0<t <1,

of the curve Ly, = {tap; 0 <t < 1} by ® tends to the boundary of M. Indeed,
the same argument as in §3 is available in this case too if we use (5.5) instead
of (3.4).

Now, setting fr; = gri-® and fr = (fro : fi1) for k=1,2,... and 1 = 0,1,
we apply the Main Lemma to the maps f. We then have

||l ~ 92 e¥% W (fro, fr1))] 2R
‘ < =1,2
AT <Copr—p k=02

where Cy is a positive constant. On the other hand, the metric on Ag induced
from M through & is given by
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1 2\ 2
. 3.2 W (f10, f1)le N7 (W (fao, far)le” \' 2
9" ds? = (Ilfllllllel( Fy[1-0 ) ( Folis ) ) |dwl?.

Therefore, we conclude that

. ) 2R P1+p2

ag ap ep
by the aid of (5.5). This contradicts the completeness of M. Thus, the proof
of Theorem III(i) is complete.
We finally consider the case where g; # const and g, = const. Suppose
that Y°7_; 65 () > 3 for distinct points ay,--- ,aq € P}(C). We can take
nonnegative constants 7, - - ,n, with

Yi=g—2=(m+-+mg) >1

and continuous functions wui,---,u, such that each w; is harmonic on
M\ f~'(e;) and satisfies conditions (C2) and (C3). Choose § with 0 < g6 <
such that p = 1/(v — ¢6) satisfies (3.4). In this case, we use the function

|h|1/(1*P)|F1F2 . _Fq|p(1—6)/(1—p)
T e W (gro, g11) PP

By the same method as before, we can construct a continuous curve of finite
length which tends to the boundary of M. This contradicts the completeness
of M. Thus, we complete the proof of Theorem III(ii).
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